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概要
本講演では，連結な向き付け可能曲面上の 2つの（単純であるとは限らない）閉曲線の自由ホモトピー類
が，互いに交わらない代表元を持つための代数的な判定条件を，Goldman括弧積を用いて与える．また応
用として，a pair of pants の場合の Goldman Lie 代数の中心を決定する．これは，単純閉測地線のみで
fill up される向き付け可能曲面に限られていた Kabiraj [4] の手法を，非単純な測地線にまで拡張するも
のであり，中心が 1点にホモトピックなループの類と，1点穴または境界成分を周回するループの類によっ
て生成されることを示す．
また，TWG括弧積についても，Goldman括弧積と同様の結果が成り立つことを示した. その系として,

TWG括弧積を用いた, 向きをもたない閉曲線の分離に関する Chas–Kabiraj の予想が，一方が primitive

でない場合に成り立つことも示した.

1 Goldman括弧積
Definition 1.1. 向き付けられた連結な曲面 S 上の有向閉曲線の自由ホモトピー類全体の集合を π̂ とし, Kπ̂

を π̂ で生成される可換環K 上の自由加群とする. x, y ∈ π̂ に対して, [x, y]を以下のように定義する

[x, y] :=
∑

P∈x∩y

εP (x, y)|xP yP |.

ただし, xと y の代表元を一般の位置にとる. これにより, x ∩ y は有限個の横断的な交点の集合となる.

また, εP (x, y) ∈ {±1}は P における xと y の局所交点数であり, |xP yP |は, 積 xP yP ∈ π1(S, P )の基点 P

を忘れることで得られる自由ホモトピー類である.

　これを双線形にKπ̂ 上へ拡張した演算 [·, ·]を Goldman括弧積という.

Goldman [4] はKπ̂がGoldman括弧積により, リー代数の構造を持つことを示した.これをGoldmanリー
代数という.また, 括弧積の定義から, 2つの閉曲線の自由ホモトピー類が互いに交わらない代表元をもつとき,

それらの Goldman括弧積は 0となる.逆に, Goldman括弧積が 0となるときに, 交わらない代表元が存在す
るかどうかについては, 次の定理が知られている.

Theorem 1.2 (Goldman [4]). 2つの閉曲線の自由ホモトピー類 x, y ∈ π̂ について xは単純な代表元をも
つとする.このとき, 以下の (1), (2)は同値である：
(1) [x, y] = 0 をみたす.

(2) x, y は互いに交わらない代表元をもつ.

ただしこの定理は，x, y の両方が単純とは限らない場合には同値でなくなることが知られている（Example

1.3）．

Example 1.3 (Chas–Kabiraj [2]). 図 1 のように a pair of pants 上に 2 つの閉曲線の自由ホモトピー類
x, y ∈ π̂ を取ると，[x, y] = 0 を満たすが，これらの代表元は常に互いに交わる．



図 1: Goldman括弧積は 0となる一方で, 代表元は常に交わってしまう例

このような背景から，x, y がともに単純とは限らない場合でも，以下の条件が同値になるのではないかと予
想されている．

Conjecture 1.4 (Chas-Kabiraj [2]). 2つの閉曲線の自由ホモトピー類 x, y ∈ π̂ について, y ̸= x, x−1 のと
き, 以下の (1), (2)は同値である：
(1) [x+ x−1, y + y−1] = 0 をみたす.

(2) x, y は互いに交わらない代表元をもつ.

この予想は, x, y ∈ π̂ のいずれか一方が単純であれば成り立つことが示されている [2]. また, x, y ∈ π̂ がい
ずれも単純でない場合についても, これらを基本群の共役類の元で表した際に, 語の長さがそれぞれ 7以下で
あれば成り立つことも, コンピュータを用いた計算により示されている [2].

Remark 1.5. この予想 1.4について, x+ x−1 と xの向きを捨てた閉曲線の自由ホモトピー類 x̃は 1対 1に
対応する. これにより, 向きを捨てた閉曲線の自由ホモトピー類の集合でK 上生成された自由加群にリー代数
の構造が誘導され, これは TWG (Thurston-Wolpert-Goldman)リー代数と呼ばれる.

このように，先行研究では x, y がともに単純とは限らない場合にも Goldman括弧積を用いて，それらが
交わらない代表元を持つことの特徴付けを与えようという試みがあるが，本講演ではこの Conjecture 1.4 と
は異なる形でその特徴付け (Cororally 2.2)を与える．また，Conjecture 1.4 に対する部分的な肯定的解決も
得られた．

2 主結果
上記のように，曲線の両方の向きを同時に扱う対称的な条件とは異なり，本講演では，一方のループ x を

m 周させて得られる xm に注目し，[xm, y] の消滅から交わらない代表元の存在を特徴付ける．

Theorem 2.1 (W.). 2つの閉曲線の自由ホモトピー類 x, y ∈ π̂ に対して, [xm, y] = 0 を満たす m ∈ N≥2

が存在するとき, y = xm または x, y は互いに交わらない代表元をもつ.



この Theorem 2.1 から, 次の系がしたがう.

Corollary 2.2 (W.). 2つの閉曲線の自由ホモトピー類 x, y ∈ π̂ に対して, 次の 3条件は同値である：
(1) [xm, y] = 0 をみたす異なる正の整数mが 2つ存在する.

(2) [xm, y] = [x, yn] = 0 をみたす異なる正の整数mと nが存在する.

(3) x, y は互いに交わらない代表元をもつ.

また, 片方のループが primitive でない（すなわち他のループの冪で表される）場合には，本講演で用いる
証明手法を応用することで，Conjecture 1.4 の主張が成り立つことも示すことができる．

Theorem 2.3 (W.). 2つの閉曲線の自由ホモトピー類 x, y ∈ π̂ について, xが primitiveでないとする.こ
のとき以下の (1), (2)は同値である：
(1) [x+ x−1, y + y−1] = 0 をみたす.

(2) x, y は互いに交わらない代表元をもつか, y = x, x−1 .

加えて, Goldman Lie 代数の中心に関する応用もある. これまでに, 閉曲面の場合には Etingof [3] により,

境界成分が 1つで種数が無限の曲面の場合には Kawazumi–Kuno [5]により, オイラー標数が負である向き付
け可能曲面（ただし a pair of pants を除く）については Kabiraj [4]により, それぞれ中心が決定されている.

特に, Kabiraj [4] の手法は双曲幾何を用いており, 単純閉測地線のみで fill up される向き付け可能曲面に
限って適用可能であったため, a pair of pants に対する中心の決定には至らなかった.本研究ではこの手法を,

単純とは限らない閉測地線のみで fill up される向き付け可能曲面にまで拡張することで, a pair of pants に
対する Goldman Lie 代数の中心の決定にも成功した.

Theorem 2.4 (W.). A pair of pants の Goldman Lie 代数の中心は, 1点にホモトピックなループの類, お
よび 1点穴または境界成分を周回するループの類によって生成される.

3 主結果の証明について
証明には双曲幾何を用いるため, 記号をいくつか準備する. オイラー標数が負である連結な向き付けられた
曲面 S 上のある双曲計量 X と, x ∈ π̂ に対して, x(X)は双曲計量 X のもとでの, xの閉測地代表元とし, そ
の長さを ℓx(X)で表す. さらに, y ∈ π̂ とし, x(X) ∩ y(X) 上の点 P における forward angleを ϕP で表す.

このとき次の補題が成り立つ.

Lemma 3.1. X を S 上のある双曲計量とする．x, y, z ∈ π̂: essential とし，ℓy(X) = ℓz(X)をみたすとす
る. また, P ∈ x(X)∩ y(X), Q ∈ x(X)∩ z(X) とし, |xm

P yP | = |xm
QzQ|をみたすm ∈ N≥2 が存在するとき，

x(X) ∩ y(X) 上の点 R で ϕR < ϕP を満たすものが存在するか，あるいは y = z が成り立つ．
特に, εP (x, y) = −εQ(x, z)であれば, x(X)∩ y(X) 上の点 R で ϕR < ϕP を満たすものが存在するか，あ
るいは y = z = xm が成り立つ．

この補題の証明では、xm, y, z, および |xm
P yP | = |xm

QyQ| に対応する 4 つの閉測地線の上半平面へのリフ
トの配置を考察する. その配置のパターンをおよそ 20通りに分類し, 各場合において主張が成り立つことを
示す.

Lemma 3.1 について、z = y を代入することで次の補題を得る.



Lemma 3.2. X を S 上のある双曲計量とする．x, y ∈ π̂ に対して，x(X) ∩ y(X) 上の点 P,Q が，
εP (x, y) = −εQ(x, y) をみたし, |xm

P yP | = |xm
QyQ| をみたす m ∈ N≥2 が存在するとする. このとき，

x(X) ∩ y(X) 上の点 R で ϕR < ϕP を満たすものが存在するか，あるいは y = xm が成り立つ．

この補題から, 2 つの閉測地線の x(X) と y(X) が交点をもつとき, 2 以上の自然数 m に対しては,

[xm, y] ̸= 0 (ただし, y ̸= xm)となることがわかる. 対偶を考えることで Theorem 2.1がしたがう.

次に, a pair of pantsの Goldman Lie代数の中心が non-essential loopの類で生成されることの証明にう
つる. Lemma 3.1から, 次の補題がしたがう.

Lemma 3.3. X を S 上のある双曲計量とする．x ∈ π̂ と y =

n∑
j=1

cjyj ∈ Kπ̂ について, 任意の自然数 m

で, [xm, y] = 0 が成り立つとき, 各 yj は以下の (1), (2)のいずれかが成り立つ.

(1) yj は non-essentialである.

(2) yj は essentialであり, yj(X)と x(X)は交わらない.

Lemma 3.3の xとして, a pair of pants上の 8の字曲線をとる (曲線の向きはどちらか 1つを定めておく)

ことにより, 中心の任意の元は, non-essential loopの線形和となる必要がわかる.

4 具体例を用いた分離判定法の適用
4.1 Goldman括弧積の代数的計算による分離判定法の利用
この節では, いくつかの例を用いて, 分離判定法の使い方を説明する. 分離判定法は, 交点を用いて定義され
る Goldman括弧積に基づいている. 基本群の共役類の集合と向き付けられた閉曲線の自由ホモトピー類の集
合の間には自然な全単射が存在するため, Goldman括弧積は部分的に代数的に計算できる. 特に, 与えられた
2つの閉曲線がホモトピーによって分離可能かどうかを, Goldman括弧積を代数的に計算することで判定する
方法を示す.

Example 4.1. 図 2 (右)に示すように, x, y を種数 2の向き付け可能な曲面 Σ 上の 2つのループとする.

図 2: 種数 2の閉曲面とその基本群のある生成系（左）, および同じ曲面上の 2つのループ x と y（右）



図 3: 基点 ∗ と交点 P1 を結ぶ道 γ

図 2より, ループ x と y は 2点で交差し, それぞれを P1, P2 とする. 各点における局所交差数は, それぞれ
+1, −1 である. よって, 以下が成り立つ：

[xm, y] = m
(
|xm

P1
yP1 | − |xm

P2
yP2 |

)
次に, 各項 |xm

Pi
yPi | が基本群の共役類の元としてどのように表されるかを説明する. 図 3に示されているよ

うに, 基点 ∗ から交点 P1 を結ぶ道 γ を取る. このとき, ループ xm
P1
yP1 は次の基点付きループとホモトピッ

クである：
γ · xm

P1
yP1

· γ−1

これは以下のように書き換えられる：

(γ · xP1
· γ−1)m · (γ · yP1

· γ−1)

したがって, π1(Σ, ∗) における γ · xP1
· γ−1 および γ · yP1

· γ−1 を計算すればよく, 図 3より,

γ · xP1 · γ−1 = ca−1 ∈ π1(Σ, ∗), γ · yP1 · γ−1 = a−1c ∈ π1(Σ, ∗)

が得られる. よって,
γ · xm

P1
yP1 · γ−1 = (ca−1)ma−1c ∈ π1(Σ, ∗)

であり, |xm
P1
yP1

| = (ca−1)ma−1c ∈ π1(Σ, ∗)/conj となる. 同様に,

|xm
P2
yP2

| = (a−1c)mca−1 ∈ π1(Σ, ∗)/conj

となる. したがって,
[xm, y] = m

(
(ca−1)ma−1c− (a−1c)mca−1

)
となる. 特に m = 1 のとき,

[x, y] = ca−2c− a−1c2a−1

どちらの項も共役類の元であるため, 文字の巡回置換により同じ共役類 c2a−2 を表している. ゆえに,

[x, y] = 0 が成り立つ（実際, x, y は自由ホモトピックなので, Lie括弧積の交代性から明らかである）. 一方
で [x2, y] ̸= 0 となるため, x, y はホモトピーによって分離できないことがわかる.



4.2 境界や穴をもつ向き付け可能曲面における計算の簡略化
次に, 境界や 1 点穴（パンクチャー）をもつ向き付け可能曲面の場合を考える. このような曲面では,

Goldman括弧積の計算が閉曲面の場合に比べて簡単に実行できる. 以下で述べるように, 適切な「arc（弧）」
の系を導入することで, ループの自由ホモトピー類を代数的に扱いやすくできる.

負のオイラー標数を持つ境界付き向き付け可能曲面を考える. 境界と境界を結ぶ互いに交わらない arc の極
大集合を選び, それらを曲面から取り除いた部分が連結であるとする（図 4の灰色の点線 (arcの系)を見よ）.

この連結性と極大性により, 任意の 2つの arc が, 端点を境界上に保ったままのホモトピー (境界相対ホモト
ピー)で同一になることはない.

図 4: 4つ穴あき円板における arcの系とループ abc−1

各 arc の片側に文字 s を, 反対側に s−1 を割り当てる. このとき, これらのラベルは曲面の基本群の生成系
を定める. 曲面上の自由ホモトピー類は以下の手順により基本群の共役類の元として表すことができる：

1. ループの自由ホモトピー類の代表元を 1つ選ぶ.

2. その代表元から任意に始点を 1つ決め, ループを 1周たどる.

3. 各 arcを通過するたびに, arcの手前側の文字を（順番も込めて）記録する.

4. それらを左から順に並べて得られる文字列 s1s2 · · · sn の巡回被約語が基本群の共役類の 1つの代表元
を与える.

例えば, 図 4の緑のループは, abc−1 に対応する. 始点の選び方によっては, bc−1a や c−1ab になり得るが,

いずれも同じ共役類を表すことに注意せよ.

Example 4.2. 図 5に示すように, x, y を 4つ穴あき円板上の 2つのループとする.



図 5: 4つ穴あき円板上の 2つのループ x, y

x, y がホモトピーによって分離可能かどうか（すなわち交わらない代表元をもつかどうか）を調べるため,

Goldman括弧積 [xm, y] を計算する. 図 5より, 交点は P1 から P6 の 6点であり, それぞれの局所交差数は
順に +1,−1,+1,−1,−1,+1 である. したがって,

[xm, y] = m
(
|xm

P1
yP1 | − |xm

P2
yP2 |+ |xm

P3
yP3 | − |xm

P4
yP4 | − |xm

P5
yP5 |+ |xm

P6
yP6 |

)
各項は, 図 4で導入した arcの系を用いて計算すると以下のようになる：

[xm, y] = m


(c2a2)m cd−2c−1b−1

− b(c2a2)mb−1 cd−2c−1b−1

+ (c2a2)m b−1cd−2c−1

− c(ca2c)m d−2c−1b−1

− c(a2c2)m d−2c−1b−1

+ (ca2c)m cd−2c−1b−1


ここで,

• 第 1項と第 4項は (c2a2)mc = c(ca2c)m なので打ち消し合う.

• 第 5項と第 6項も同様に打ち消し合う.

• 第 2項の先頭にある bと末尾にある b−1 は reduceできる. そのため, 第 2項は第 3項と共役類として
一致するので打ち消し合う.

となるので, 任意の自然数 m に対して [xm, y] = 0 が成り立つ.

定理 2.2 より, 2 つのループ x, y はホモトピーで分離可能であることが従う. 実際, x = c2a2, y =

d−2c−1b−1c ∈ π1(Σ, ∗)/conj であることから, 図 6のように両者が交わらない代表元を選べることに気付く読
者もいるかもしれない.



図 6: 4つ穴あき円板上で交わらない xと y の代表元
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